Trust based recommender system using ant colony for trust computation
نویسندگان
چکیده
Collaborative Filtering (CF) technique has proven to be promising for implementing large scale recommender systems but its success depends mainly on locating similar neighbors. Due to data sparsity of the user–item rating matrix, the process of finding similar neighbors does not often succeed. In addition to this, it also suffers from the new user (cold start) problem as finding possible neighborhood and giving recommendations to user who has not rated any item or rated very few items is difficult. In this paper, our proposed Trust based Ant Recommender System (TARS) produces valuable recommendations by incorporating a notion of dynamic trust between users and selecting a small and best neighborhood based on biological metaphor of ant colonies. Along with the predicted ratings, displaying additional information for explanation of recommendations regarding the strength and level of connectedness in trust graph from where recommendations are generated, items and number of neighbors involved in predicting ratings can help active user make better decisions. Also, new users can highly benefit from pheromone updating strategy known from ant algorithms as positive feedback in the form of aggregated dynamic trust pheromone defines ‘‘popularity’’ of a user as recommender over a period of time. The performance of TARS is evaluated using two datasets of different sparsity levels viz. Jester dataset and MovieLens dataset (available online) and compared with traditional Collaborative Filtering based approach for generating recommendations. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Dt-bar: a Dynamic Ant Recommender to Balance the Overall Prediction Accuracy for All Users
Ant colony algorithms have become recently popular in solving many optimization problems because of their collaborative decentralized behavior that mimics the behavior of real ants when foraging for food. Recommender systems present an optimization problem in which they aim to accurately predict a user’s rating for an unseen item by trying to find similar users in the network. Trust-based recom...
متن کاملA Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملDesigning a trust-based recommender system in Social Rating Networks
One of the most common styles of business today is electronic business, since it is considered as a principal mean for financial transactions among advanced countries. In view of the fact that due to the evolution of human knowledge and the increase of expectations following that, traditional marketing in electronic business cannot meet current generation’s needs, in order to survive, organizat...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012